admin
時間:2024-01-20 15:09:31來源:本站整理點擊:
sin(x+y)=sinx*cosy+siny*cosxcos(x+y)=cosx*cosy-sinx*siny
我們這里是高一下學期學,大概是在必修二剛開始沒多久的解三角形之前會學這些,人教版是這樣,其他的地方用的版本可能不一樣,所以不一定都這時候學,不用擔心,難度的話對我這種中檔學生來說還可以,上課好好聽講,好好學應該沒問題的
余弦定理公式推導過程余弦定理公式是高中數學重點公式之一,那么余弦定理公式推導過程是
在任意△ABC中
做AD⊥BC.
∠C所對的邊為c,∠B所對的邊為b,∠A所對的邊為a
則有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
根據勾股定理可得:
AC2=AD2+DC2
b2=(sinBc)2+(a-cosBc)2,
b2=(sinB*c)2+a2-2accosB+(cosB)2c2,
b2=(sinB2+cosB2)c2-2accosB+a2,
b2=c2+a2-2accosB,
cosB=(c2+a2-b2)/2ac。
余弦90度等于0,余弦0度等于1。
余弦定理,歐氏平面幾何學基本定理。余弦定理是描述三角形中三邊長度與一個角的余弦值關系的數學定理,是勾股定理在一般三角形情形下的推廣,勾股定理是余弦定理的特例。
余弦定理是揭示三角形邊角關系的重要定理,直接運用它可解決一類已知三角形兩邊及夾角求第三邊或者是已知三個邊求三角的問題,若對余弦定理加以變形并適當移于其它知識,則使用起來更為方便、靈活。
步驟/方式1
余弦定理公式如圖所示
步驟/方式2
推導過程:平面三角形證法
在△ABC中,BC=a,AC=b,AB=c
作AD⊥BC于D
則AD=c*sinB,DC=a-BD=a-c*cosB
在Rt△ACD中,
b2=AD2+DC2=(c*sinB)2+(a-c*cosB)2
=c2sin2B+a2-2ac*cosB+c2cos2B
=c2(sin2B+cos2B)+a2-2ac*cosB
=c2+a2-2ac*cosB
對于任意三角形,任何一邊的平方等于其他兩邊平方的和減去這兩邊與他們夾角的余弦的兩倍積,若三邊為a,b,c三角為A,B,C,則滿足性質——(注:a*b、a*c就是a乘b、a乘c。a^2、b^2、c^2就是a的平方,b的平方,c的平方。)a^2=b^2+c^2-2*b*c*CosAb^2=a^2+c^2-2*a*c*CosBc^2=a^2+b^2-2*a*b*CosCCosC=(a^2+b^2-c^2)/2abCosB=(a^2+c^2-b^2)/2acCosA=(c^2+b^2-a^2)/2bc從余弦定理和余弦函數的性質可以看出,如果一個三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角一定是直角,如果小于第三邊的平方,那么第三邊所對的角是鈍角,如果大于第三邊的平方,那么第三邊所對的角是銳角。即,利用余弦定理,可以判斷三角形形狀。同時,還可以用余弦定理求三角形邊長取值范圍。
Copyright 2005-2023 yaolan.com 〖搖籃網〗 版權所有 備案號:滇ICP備2022004586號-57
聲明: 本站文章均來自互聯網,不代表本站觀點 如有異議 請與本站聯系 本站為非贏利性網站 不接受任何贊助和廣告 侵權刪除 478923@qq.com